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The paper gives the results of numerical solutions of nonlinear, partly linear- 
ized, and completely linearized nonstationary problems of heat conduction in a 
plate annealed in a liquid medium. 

The quality of annealed parts depends on the technological conditions of the hot-working, 
which can be optimized on the basis of an analysis of the calculated temperature fields in 
the parts during the annealing process. The heat-transfer problem in this case is essential- 
ly nonlinear, and therefore sufficiently accurate calculated temperature distributions can be 
obtained only by a numerical method [i]. Nonlinear problems are individual, by reason of the 
specificity of the nonlinearities themselves; therefore, any generalization requires the ac- 
cumulation and analysis of solutions of many problems. Investigations in recent years have 
shown that the necessary engineering accuracy (errors of no more than +1%) can be obtained 
when the numerical solution is carried out on analog or digital computers with due regard 
paid to the fairly numerous factors affecting the accuracy of the numerical solution [2-5]. 

An interesting fact which had apparently gone unnoticed in the past was discovered in 
[5] in the investigation of nonstationary temperature fields in an ingot-mold system as the 
ingot hardens, in a nonlinear problem with several nonlinearities. The errors in complete 
linearization, with specific laws governing the variation of the nonlinearities as functions 
of temperature, were found to be smaller than the errors resulting from partial linearization. 
This fact disagrees with the usual idea that errors increase as the mathematical model is 
simplified. This phenomenon may be called the "partial-linearization paradox." In what iol- 
lows, using as an example another nonlinear problem with several nonlinearities, we shall 
show that a phenomenon analogous to the one observed in [5] can also occur in the annealing 
of objects in liquid media. 

We give below the results of the numerical investigation of the following mathematical 
model : 

OxO [ ~(T) OT --cv(T)----OTo~ ~0; O < x < l , ' r > O ,  (1)  

OT 
2, (T) - - 0 x  + r (Ts) (Ts - -  TTn) ---- 0; x - 0, (2 )  

5T 
--0, x----l, 

Ox ' (3) 

T(x, 0) ---- Tmax. (4)  

Since the configuration of the metal parts is a factor affecting the temperature field but 
not very substantially changing the quantitative estimate of the influence of other factors, 
the problem was solved as a one-dimensional one. The methods used in this investigation can 
also be used for solving two-dimensional and three-dimensional problems in those cases in 
which it is necessary to take account of the complicated geometry of the parts involved. We 
determined the temperature fields in a plate of thickness 21 = 0.16 m which was annealed in 
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Fig. i. Temperature at the surface of the plate (Ts, ~ 
as a function of time (r, sec) obtained by solving the prob- 
lem on an analog (a) and a digital (b) computer. The num- 
bers of the curves are the numbers of the variants in the 
text. 

water at T m = 20~ The characteristic sharply peaked curve of ~(Ts) (boiling in a large 
volume) was taken from the data of [6], and the curves of %(T) and cv(T) were taken from the 
data of [7]. The initial values of %, c V, and ~ were given in the form of tables with a tem- 
perature interval of 25~ Tma x = 14000C. 

The numerical solutions for four variants of the problem were obtained by the method of 
networks (an implicit scheme, with a space interval of 0.01 m) on two types of computers: an 
analog computer, using an integrator with an electrical-model network of ohmic resistances 
(an R--R network), and a digital computer, the BESM-4. Variant i was the general nonlinear 
problem, using %(T), cv(T) , and a(Ts). Variant 2 was a partially linearized problem with %, 
c V = const (for T = 500~ and ~(Ts). Variant 3 was a partially linearized problem with 
%(T), cv(T), and ~ = const (4650 W/m2,deg). Variant 4 is the completely linearized (linear) 
problem, with %, cv, ~ = const. 

Different methods were used on the analog and the digital computers for selecting the 
time interval ~T and taking account of the nonlinearities of %(T), cv(T) , and ~(Ts). The 
interval used on the analog computer was mainly the constant value ~r = 1 sec. Only in a few 
portions of the time range was this value decreased or increased, depending onthe rate of 
change of the surface temperature. On the digital computer the value of ~T was automatically 
selected on the basis of the curvature of the graph of Ts(~) at the relevant stage of the cal- 
culations. On the analog computer, for each point the temperature value obtained at the pre- 
ceding step in time was used for determining the values of %, cv, and ~ at the current step 
by a choice of the values of these quantities from the given tables, using linear interpola- 
tion. On the digital computer this was done by using the average value of the temperature at 
the step in question, which had been calculated with due regard to the rate of change of tem- 
perature at the preceding step. The calculations were carried out on two types of computer 
because the schemes for taking account of the nonlinearities and the choice of time intervals 
are different for analog and digital computers, and this, as will be seen later, leads to dif- 
ferent values of the error. The choice of the type of computer in each specific case is made 
in accordance with a system of indicators given, for example, in [8]. In the analog and 
digital computer calculations we used implicit finite-difference schemes, with some modifica- 
tions described above for the iteration-free (linear [9]) scheme for taking account of the 
nonlinearities. Such schemes have been considered in detail in [9, i0]. In the monograph 
[9] Samarskii made a special investigation of the errors of approximation, the stability, the 
convergence, and the accuracy of analog-type finite-difference schemes for quasilinear equations. 

Figure 1 shows the curves obtained for the plate surface temperature as a function of 
time on the analog (a) and the digital (b) computers. The numbers of the curves on the fig- 
urea are those of the variants listed above. Figure 2 shows the curves, as functions of time, 
of the linearization errors in the determination of the surface temperatures according to 
variants 2-4 in comparison with variant i, constructed on the basis of the digital-computer 
results. The absolute error of the solution in the i-th variant was found as the difference 

ATs~ = T s i -  Tsl. (5) 
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Fig. 2. Linearization errors (ATs, ~ 
as functions of time (T, sec) for vari- 
ants 2, 3, 4, according to digital-com- 
puter results. The numbers of the 
curves are the numbers of the variants. 

It can be seen from the figures that in problems of heat conduction in cases of annealing in 
liquid media we find the phenomenon noted in [5]: the errors of partial linearization are 
greater at certain instants of time than the errors of complete linearization. For example, 
at 55 sec (Fig. 2), IATs=I > IATs41,and at 75 sec, fATs31 > IATs41. This fact has already 
been encountered in the investigation of the more complicated system of mold and hardening 
ingot [5], It occurs in cases in which the errors of the linearization of individual non- 
linearities have opposite signs. These errors may considerably exceed the value allowable 
in engineering practice. For example, for variant 2 (see Figs. 1 and 2) the maximum value is 
IATs2| = 225~ which is about 50% of the instantaneous value of the temperature in variant i. 
The error in the time when very rapid cooling begins is 18 sec, or about 25%. Therefore, in 
the choice of simpler methods of solution corresponding to the partially linearized or linear 
problems to which the initial general nonlinear problem is reduced, we must make a careful 
analysis of the effect of the nonlinearities in each specific problem. 

The characteristic oscillations of curves 1 and 2 (Fig. la) for x = 0, constructed on 
the basis of the analog-computer results, are due in this case to the sharp changes in the 
value of ~ when there is a transition to the next step in time. Analogous oscillations aris- 
ing when there are sharp changes in the boundary conditions were noted and investigated in 
[11-13]. They should not be confused with the oscillations caused by the physical nature of 
the phenomena [14]. When the time interval was selected automatically, as in the digital- 
computer solution of the problem, over the entire range of time variation (Fig. ib), there 
were no oscillations in the surface temperature. 

There is a quantitative difference between the estimates of the effects of the non- 
linearities found from the analog results and those found from the digital results. For 
example, in the 20-80 sec time range, curve 3 in Fig. la is below curve 4, while in Fig. ib 
curve 3 is above curve 4. The time at which very rapid cooling begins differs by i0 sec be- 
tween Figs. la and ib for the same variants. 

Thus, in the numerical solution of problems of nonstationary heat conduction, we must 
obtain the necessary accuracy and keep the solution oscillation-free by an appropriate choice 
of the time-interval value and an appropriate scheme for taking account of the nonlinearities. 
The influence of the time-interval values on the accuracy has long been known, and we would 
not have emphasized this fact above if there were not a close connection between the value of 
the time interval and the scheme for taking account of the nonlinearity, on the one hand, and 
the nature of the law governing the variation of the nonlinearity, on the other. A time in- 
terval selected on the basis of the solution of the corresponding linear problem may yield 
optimal accuracy for that problem, but the same value may lead to inadmissible errors in the 
solution of the nonlinear problem. The choice of the time interval must be made by solving 
the nonlinear problem as a control problem (this may be one-dimensional) simultaneously with 
the choice of the scheme for taking account of the nonlinearity. Disregarding this condition 
may lead to incorrect quantitative, and even qualitative, estimates. If the nonlinearities 
are closely dependent on temperature, then for the numerical solution of such problems on 
analog computers we should carefully select the value of the time interval at each step of the 
solution, while on digital computers we should use an automatic choice of the time interval. 
Without control solutions of general nonlinear, partially linearized, and linear problems, we 
cannot draw any conclusions as to whether partial or complete linearization would be best for 
a given type of problem. Only a solution of the general nonlinear problem can guarantee that 
we will obtain results with an error of no more than • 
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NOTATION 

T, temperature; %, thermal conductivity; c, specific mass heat capacity; p, density; 
c V = cp, specific volumetric heat capacity; ~, heat-transfer coefficient; 21, plate thick- 
ness. Indices: s, surface; m, medium. 
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HEAT TRANSFER BY NATURAL CONVECTION IN SPHERICAL GAS LAYERS 

A. S. Lyalikov UDC 536.25 

The experimental data of [i] are correlated in the form of a dimensionless equa- 
tion which is simple and sufficiently accurate for technical calculations and is 
applicable in the entire region covered by the experiment -- up to Radk = 10 I~ 

The extensive experimental data [i] on free-convection heat transfer through spherical 
layers of gas (air, C02, H=) are of independent value and can also provide material for the 
verification of theoretical solutions in this region. Unfortunately, this valuable experi- 
mental material has not yet been analyzed and correlated in an appropriate manner: The cor- 
relation carried out in [2] lacks an adequate physical basis and is inconsistent with the 
main tenets of similarity theory. 

An analysis of the conditions of similarity of motion and heat-transfer processes due to 
natural convectinn of gas in a region bounded by eccentric spherical boundaries with constant 
temperatures TI and T= led to a system of generalized variables for the description of heat 
transfer on surfaces bounding a spherical layer. In particular, the generalized relation for 
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